2 PID网络调节及参数设定
PID(Proportion Integrator Differentiator)积分微分比例调节补偿网络是TEC温度控制最关键的部分,是影响到TEC控制器的响应速度和温度稳定性的
一个关键因素。用PID控制技术作为核心,以减少静态误差、提高控制精度。PID相当于放大倍数可调的放大器,用比例运算和积分运算来提高调节精度,用微分运算加速过渡过程,较好地解决了调节速度与精度的矛盾。PID的数学模型可用式(3)表示:
式中:Kp为比例系数;T1为积分时间常数;TD为微分时间常数。
ADN8830 TEC控制器采用外部补偿网络,仅需要几个电阻和电容,如图3所示。不同的应用设计者可以根据自己的热负载特性来调整补偿网络,从而达到最佳的温度设定时间和稳定性容限,但补偿网络的转换周期对控制系统的稳定性影响较大。为了确保温度控制的稳定性,补偿网络的转换周期必须小于TEC和温度传感器的热时间常数。但是TEC和温度传感器的热时间常数是一个难以描述的因素,无法通过计算方式来设计网络参数。针对图3的PID网络通常可以通过以下调试步骤来优化参数:
(1)将电容C9短路、C11开路,仅只留下电阻R6和R5构成一简单的补偿比例网络;
(2)增加电阻R6和R5的比例,从而增加增益直至TEC两端的电压开始出现振荡,然后将R6和R5的比例缩小至原来的1/2;
(3)将电容C9串接到补偿网络,并减小该电容的值直至TEC两端的电压开始出现振荡,然后将电容C9的值增加1倍,电容C9的初始值基于式(4)使单位增益为0.1 Hz;
(4)短路电阻R7并加入电容C11使TEC两端的电压开始出现振荡,这时可以减小电容C11或者重新接入电阻R7使TEC两端的电压稳定;
(5)改变TEMPSET的电压值来调节TEC两端的电压稳定时间,TEMPSET的变化约在100 mV,然后减小电容C11,C9和电阻R7从而减小稳定时间,但是会造成输出电压过充;
(6)添加与R6和C9并联的反馈电容C10,反馈电容C10在不增加稳定时间的前提下能够提高系统的稳定性。一般330 pF~1 nF的电容比较合适。
本文设计的温度控制电路利用图3的PID网络结构,当C9=22μF,C10=330 pF,C11=1μF,R7=1.388 MΩ,R5=1.092 MΩ,R6=175 kΩ时,系统从环境温度改变到目标温度的建立时间在10 s以内,精度可达0.01℃,并且能保持长期稳定。
3 性能测试
实验测试是在室温下进行的,图4中所示的信号为ADN8830的管脚30(TEMPOUT)的电压变化,其电压的变化与传感器探测到的温度变化相一致,因此可以从此电压变化的特性得到温度变化的特性。如图4所示可以看到经过8.4 s,电压稳定在预设电压1.45 V上,也就意味着温度从环境温度改变到目标温度25℃的建立时间为8.4 s,且过充较小,并达到了稳定。该电路具有正常工作指示和工作失效报警指示功能。当热敏电阻检测到的温度达到设定温度(本电路设定温度为25℃)时,ADN8830的管脚5(TEMPLOCK)输出高电平,表示非制冷红外焦平面的工作温度已达设定温度,此时发光二极管D1发光;当管脚1(THERMFAULT) 输出高电平时,表示电路工作异常,发光二极管D2被点亮。
4 结 语
本文设计的基于ADN8830的非制冷红外焦平面温度控制电路效率高、功耗低、体积小,通过实际应用证明能够把温度控制在预设温度上,并且精度可达0.01℃。通过几个简单的电阻电容构成的外部补偿网络能够在10 s内把温度控制在预设温度上,并使整个温控系统保持长时间稳定工作状态。
[录入:admin]
[日期:10-05-17]